GRE Reading Comprehension: Manhatton-GRE阅读Manhatton - G1AM1IU0FIVA3969B$

Without a doubt, one of the pinnacle achievements of modern physics is the development of Maxwell's equations. Their beauty lies in their elegant simplicity, while the breadth and depth of Maxwell's equations speak for themselves. These four simple equations, coupled with the Lorenz Force Equation, form a full basis for modeling the behavior of an entire branch of physics: classical electrodynamics and optics. Further, despite their deceptive simplicity, Maxwell's equations have withstood the test of time. While equations modeling most other fields of physics have been modified to accommodate new experimental results and theories, Maxwell's equations have not been altered since their original conception in 1861. Take, for instance, Einstein's theory of general relativity, first published in 1916. Although the equation governing general relativity was also elegant and powerful, and laid the framework for most modern astrophysics, Einstein himself did not realize and correct an error within his equation until nearly fifteen years later. Newtonian mechanics has given way to more powerful theoretical frameworks and analytical mechanics has bent under the weight of quantum theory, but Maxwell's equations stand as originally written, tried and true. Maxwell's four equations, the majority of which are less than twenty characters, are the mathematical formulation of four very simple ideas. First, any free electric charge will result in an electric field. Second, magnets do not have free charges, but are always paired together with a positive and negative end, yielding a magnetic field that has a looped structure. Third, a magnetic field that changes in time will result in an electric field and, fourth, an electric current or changing electric field will produce a magnetic field. It is truly amazing that these four simple rules, unmodified, have been used to model all electric, magnetic, and optics studies for more than 150 years.