TOEFL Reading: ETS-TOEFL阅读机经 - 8LDH4A3CF3M23QO7M$

Why has life flourished on Earth? This question has a two-part answer. First, Earth has been a cradle for life because of its position relative to the Sun. second, once life began on Earth, simple early life-forms (photosynthetic bacteria) slowly but inexorably altered the environment in a manner that not only maintained life but also paved the way for later, complex life-forms. These changes allowed later organisms to evolve and thrive. Humans and other higher organisms owe their life-supporting environment to these early life-forms. Earth's earliest atmosphere contained several gases: hydrogen, water vapor, ammonia, nitrogen, methane, and carbon dioxide, but no oxygen. Gas mixtures emitted from present-day volcanoes resemble this early atmosphere, suggesting its origin from volcanic eruptions. In Earth's earliest atmosphere, methane and carbon dioxide occurred at much higher levels than at present – a circumstance that was favorable for early life. Methane and carbon dioxide are greenhouse gases that warm atmospheres by retarding loss of heat to space. These two gases kept Earth warm during the Sun's early history, when the Sun did not burn as brightly as it now does. (An early dim period, with later brightening, is normal for stars of our Sun's type.) Earth's modern atmosphere, which is 78 percent nitrogen gas, 21 percent oxygen, and about 1 percent argon, water vapor, ozone, and carbon dioxide, differs dramatically from the earliest atmosphere just described. The modern atmosphere supports many forms of complex life that would not have been able to exist in Earth's first atmosphere because the oxygen level was too low. Also, if atmospheric methane and carbon dioxide were as abundant now as they were in Earth's earliest atmosphere, the planet's temperature would likely be too hot for most species living today. How and when did the atmosphere change? The answer to this riddle lies in the metabolic activity of early photosynthetic life-forms that slowly but surely transformed the chemical composition of Earth's atmosphere. Some of these early organisms were photosynthetic relatives of modern cyanobacteria (blue-green bacteria). In the process of photosynthesis, carbon dioxide gas combined with water yields oxygen. In Earth's early days, all over the planet countless photosynthetic bacteria performed photosynthesis. Together, these ancient bacteria removed massive amounts of carbon dioxide from Earth's atmosphere by converting it to solid organic carbon. These ancient bacteria also released huge quantities of oxygen into the atmosphere. Other ancient bacteria consumed methane, greatly reducing its amount in the atmosphere. When our Sun later became hotter, the continued removal of atmospheric carbon dioxide and methane by early bacteria kept Earth's climate from becoming too hot to sustain life. Modern cyanobacteria still provide these valuable services today. The bacterial oxygen release improved conditions for life in two ways. First, oxygen is essential for the metabolic process known as cell respiration that allows cells to efficiently harvest energy from organic food. Second, oxygen in the upper atmosphere reacts to form a protective shield of ozone. Earth is constantly bombarded by harmful ultraviolet (UV) radiation from the Sun. Today, Earth's upper-atmosphere ozone shield absorbs enough UV to allow diverse forms of life to survive. But because early Earth lacked oxygen in its atmosphere, it also lacked a protective ozone barrier. As a result, early life on Earth was confined to the oceans, where the water absorbed the UV radiation. Only after oxygen released by ancient bacteria drifted up into the upper atmosphere and reacted with other oxygen molecules to form a protective layer of ozone could life flourish at the surface and on the land. The absence of an oxygen atmosphere on Mars and other planets in our solar system means that these planets also lack an ozone shield that would protect surface-dwelling life from UV radiation. The surface of Mars is bombarded with deadly radiation; if any life exists on Mars, it would almost certainly be subterranean.