TOEFL Reading: ETS-TOEFL阅读机经 - 553FL7TTME7L2273M$

Although the history of glaciation during the Pleistocene epoch (2 million to 10,000 years ago) is well established, we do not know with complete certainty why glaciation takes place. For over a century, geologists and climatologists have struggled with this problem, but it remains unsolved. It is long known that Earth's orbit around the Sun changes periodically, cyclically affecting the way solar radiation strikes the Earth, but the idea that these changes affect climate was first advanced by James Croll in the late 1800s. Later, Milutin Milankovitch elaborated the theory with calculations that convincingly argued that the cycles, now known as Milankovitch cycles, could cause climatic variations. The Milankovitch cycles emerge from the way three cyclic changes in Earth's orbit combine. One characteristic of Earth's orbit is its eccentricity, the degree to which the orbit is an ellipse rather than a circle. Changes in the eccentricity of Earth's orbit occur in a cycle of about 96,000 years. The inclination, or tilt, of Earth's axis also varies periodically, moving between 22 degrees and 24.5 degrees. The tilt of Earth's axis, toward the Sun at some times of the year and away from the Sun at other times, is responsible for the annual cycle of seasons. The greater the tilt, the greater the contrast between summer and winter temperatures. Changes in the tilt occur in a cycle 41,000 years long. Also, Earth wobbles as it spins, like a slightly unsteady top. The wobble cycle is completed once every 21,700 years. Changes in eccentricity, tilt and wobble do not affect the total amount of solar radiation Earth receives in a year, but they do affect how evenly or unevenly this radiation is disturbed over the course of a year. According to the Milankovitch theory, about every 40,000 years the three separate cycles combine in such a way that the difference between summer and winter temperatures is at a minimum. At this point winter temperatures are milder but so too are summer temperatures. As a result, less ice is melted in the summer than is formed in the winter, so glaciers build up and a period of glaciation results. Milankovitch worked out the ideas of climatic cycles in the 1920s and 1930s, but it was not until the 1970s that a detailed chronology of the Pleistocene temperature changes was determined that could test the predictions of this theory. A correspondence between Milankovitch cycles and climate fluctuations of the last 65 million years seems clear. Furthermore, studies or rock samples drilled from the deep-sea floor and the fossils contained in them indicate that the fluctuation of climate during the past few hundred thousand years is remarkably close to that predicted by Milankovitch. A problem with Milankovitch's explanation of glaciation arises from the fact that the variations in Earth's orbit, and hence the Milankovitch cycles, have existed for billions of years. Thus we might expect that glaciation would have been a cyclic event throughout geologic time. In fact, periods of glaciation are rare. So there must be another factor acting together with the Milankovitch cycles that causes periods of glaciation. Once this additional factor makes the temperature low enough, the cyclic variations of the Milankovitch cycles will force the planet into and out of glacial epochs with a fixed regularity.   Many hypotheses have been proposed for the additional cooling factor. Some suggest that variations in the Sun's energy output could account for the ice ages. However, our present understanding of the Sun's luminosity holds that it should have progressively increased, not decreased, over the course of Earth's history. Still others argue that volcanic dust injected into the atmosphere shields Earth from the Sun's rays and initiates an ice age. However, no correlation has been found between volcanic activity and the start of the last ice age. An increasingly attractive theory holds that decreases in atmospheric carbon dioxide starts the cooling trend that leads to glaciation. Carbon dioxide traps solar energy reflected from the Earth's surface. If carbon dioxide levels decrease, less heat is trapped and Earth's surface cools. Recent studies of the carbon dioxide content of gas bubbles preserved in the Greenland ice cap do in fact show that high carbon dioxide levels are associated with warm interglacial periods, and low levels with cold glacial periods.