TOEFL Reading: ETS-TOEFL阅读机经 - 38I972JMSHR4M7HLM$

Several different theories have been put forward to explain how the hard-shelled eggs of land-dwelling reptiles (e.g. lizards) evolved from the soft eggs that amphibians (e.g. frogs and toads) lay in water. The Romer model of egg development is named after the late Alfred Romer, a paleontologist who also became director of the Harvard University Museum of Comparative Zoology. His specialty was early reptiles because, he felt, they were the key to understanding the great reptile diversification seen in the Late Paleozoic and Mesozoic Eras (around 230 million years ago). Romer's hypothesis was that some aquatic amphibians – that is, amphibians living in water – called anthracosaurs began to lay their eggs on land at about the time that they were evolving reptile-like skeletal features. Indeed, some of these early amphibians and earliest reptiles are so similar in their skeletons that the exact transition point from one to the other is still difficult to determine. Eventually, though, the transition was made, but these early reptiles remained aquatic. The advantage for laying eggs on land was primarily to avoid the aquatic larval (pre-adult) stage during which immature amphibians live exclusively in water with its inherent risk of predators and drying of ponds. However, the land has its own set of dangers, not least of which is the drying effect of the atmosphere. To cope with these problems, a series of protective membranes developed around the egg, including a hard shell. Only later did the reptiles completely abandon an aquatic lifestyle. Another hypothesis was proposed by German paleontologist Rolf Kohring, whose specialty is fossil eggs. In Kohring's model, amphibians during the Mississippian epoch (360 – 320 million years ago) spread into nutrient-poor or cooler water. Because of the harsher conditions, eggs were produced with larger yolks, that is, more nutrients for the embryo. With larger yolks, the eggs were bigger, and fewer of them could be produced by the female – hundreds rather than thousands. To keep the larger egg intact, one or more membranes were developed, including one that surrounded and protected the egg. This outer membrane provided a place to safely store calcium ions, which are poisonous. Accumulating the calcium in a hard shell then made it possible for the egg to be laid on land (it was pre-adapted to be laid there.) One other model we should consider is the anti-predator hypothesis proposed by Gary and Mary Packard to explain the evolution of the hard-shelled egg. Their model was not concerned with the development of membranes surrounding the egg but continues the story after these membranes appeared. The Packards assume that the earliest reptiles laid leathery shelled eggs on very wet ground where they could absorb water during the embryos' growth. But life on the ground is not without hazards, based on studies of modern reptiles with leathery shelled eggs. Predatory insects and microbes can be a major cause of egg mortality. To counter this loss of eggs, some of the early reptiles began secreting a thin calcareous (containing calcium carbonate) layer. This hard layer gave the embryos a better chance of surviving until hatching. And these survivors in turn would probably leave more progeny once a few of them reached reproductive age. In time, a thicker, more resistant shell developed. However, a thicker eggshell meant that less water could be absorbed for the needs of the embryo. To compensate, larger eggs were produced, containing a great deal more albumen (egg white, a water-soluble protein). At this point, the rigid eggshell had reached the bird egg level of complexity. Mary Packard presented yet another model with her colleague Roger Seymour. They note that amphibian eggs can never get very large because the gelatin coat surrounding the developing larva is not very good at transmitting oxygen. Because of this restriction, we will never see frog eggs the size of a chicken's. For Packard and Seymour, the major evolutionary breakthrough in reptile eggs was the elimination of the thick gelatin coat and replacing part of it with a fibrous membrane. This change allowed larger eggs to be developed.